欢迎访问邓风课题组
您当前的位置:首页 > 研究方向
研究方向

       能源与资源的高效利用已成为世界可持续发展的一个重要挑战,我们的研究工作主要围绕低碳分子的多相催化反应体系,针对表界面化学中催化剂结构与分子反应机制问题,开展先进固体核磁共振谱学方法与应用研究,结合理论计算,在原子-分子水平阐明催化剂(活性位)微观结构与催化反应机理,建立催化剂构-效关系,为高性能催化剂的开发提供指导,为复杂催化表界面化学研究提供高效谱学手段。

 

原位NMR技术与催化反应机理

 

     发展原位(in situ and operando)固体NMR技术,在宽温度(400 ℃)以及压力(50 bar)范围内,对气-固相以及液-固相催化反应过程进行NMR表征,结合快速采样方法,实现对催化剂结构与分子动态变化的快速跟踪与分析。

 


1.png



1. Wang, X. M.; Qi, G. D.; Xu, J.; Li, B. J.; Wang, C.; Deng, F. NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst. Angew. Chem. Int. Edit. 2012, 51, 3850-3853. 

2. Zhou, X.; Wang, C.; Chu, Y.; Xu, J.; Wang, Q.; Qi, G.; Zhao, X.; Feng, N.; Deng, F. Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nat. Commun. 2019, 10, 1961.

3. Wang, C.; Zhao, X.; Hu, M.; Qi, G.; Wang, Q.; Li, S.; Xu, J.; Deng, F. Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM-5 Zeolite by Solid-State Nuclear Magnetic Resonance Spectroscopy. Angew. Chem. Int. Edit. 2021, 60, 23630-23634.

 


固体NMR方法发展与应用

 

    针对固体NMR观测中普遍存在的灵敏度和分辨率挑战,开展强磁场、高速魔角旋转下灵敏度增强的多维、多核固体NMR实验脉冲方法的优化设计,以显著提升多相催化材料及其他复杂体系中关键核素(如四极核27Al, 67Zn, 95Mo, 17O等)的观测效能。


 wq.png

 


1. W. Gao; Q. Wang; G. Qi; J. Liang; C. Wang; J. Xu; F. Deng, Active Ensembles in Methane Dehydroaromatization over Molybdenum/ZSM-5 Zeolite Identified by 2D 1H−95Mo Magic Angle Spinning Nuclear Magnetic Resonance Correlation Spectroscopy. Angew. Chem. Int. Ed. 2023, 62, e202306133.

2. M. Zheng; S. Zeng; X. Wang; X. Gao; Q. Wang; J. Xu; F. Deng, Heteronuclear-filtered 1H homonuclear multi-quantum correlation experiment at 100 kHz magic-angle spinning. Magn. Reson. Lett.  2022, 2, 266-275.

3. Q. Wang; W. Li; I. Hung; F. Mentink-Vigier; X. Wang; G. Qi; X. Wang; Z. Gan; J. Xu; F. Deng, Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy. Nat. Commun. 2020, 11 , 3620.


 

超极化NMR技术与应用

 

     针对NMR本征灵敏度低的问题,开发仲氢诱导超极化技术(PHIP)以及动态核极化技术(DNP),打破热平衡下自旋核的波尔兹曼分布,获得NMR信号强度数个量级的提升,实现对催化材料结构的高灵敏表征;结合原位NMR技术,增强低含量反应物种(中间体、产物等)信号,实现对工况条件下催化反应的极化观测。

 

3.png


 

1. W. Wang; R. J. Lewis; B. Lu; Q. Wang; G. J. Hutchings; J. Xu; F. Deng, The Role of Adsorbed Species in 1-Butene Isomerization: Parahydrogen-Induced Polarization NMR of  Pd–Au Catalyzed Butadiene Hydrogenation. ACS Catal. 2024, 14, 2522-2531.

2. W. Wang; Q. Wang; J. Xu; F. Deng, Understanding Heterogeneous Catalytic Hydrogenation by Parahydrogen-Induced Polarization NMR Spectroscopy. ACS Catal. 2023, 13, 3501-3519.

3. W. Y. Wang; Q. M. Sun; Q. Wang; S. H. Li; J. Xu; F. Deng, Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catal. Sci. Technol. 2022, 12 , 4442-4449.

 


催化反应体系中的磁共振影像

 

      发展磁共振影像技术(MRI),在多相催化剂颗粒至中试反应器尺度对多相催化体系进行表征,并结合固体NMR,实现对多相催化反应中热、质以及扩散等时间-空间分布信息的获取与分析,为高性能催化剂的设计以及反应工艺的优化提供实验数据。


 

4.png

 


1. Wang, C.; Zheng, M.; Hu, M.; Cai, W.; Chu, Y.; Wang, Q.; Xu, J.; Deng, F., Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J. Am. Chem. Soc. 2024, 146, 8688-8696.

2. Wang, C.; Chu, Y.; Xiong, D.; Wang, H.; Hu, M.; Wang, Q.; Xu, J.; Deng, F., Water-Induced Micro-Hydrophobic Effect Regulates Benzene Methylation in Zeolite. Angew. Chem. Int. Edit. 2024, 63 , e202313974.

3. Xu, R.; Wang, Q.; Wang,W.; Bao, Q.; Zhang, Z.; Liu, C.; Xu, J.; Deng, F., In situ NMR Imaging of Solvent Infiltration on γ-Al2O3 particles. Chem. J. Chinese Universities., 2023, 44, 20220587.

 

 

催化剂构-效关系及光催化反应机制

 

     利用固体NMR和EPR技术,探索催化剂微观结构,揭示催化活性位并建立构-效关系;结合自主发展的原位(in situ and operando)方法,实现对光催化反应的实时监控,捕获光催化反应中间体,阐明光催化机理。

 


QQ图片20240801162339.png


H2O/TiO2界面的微观结构和界面H2O的自发解离


1. Feng, N. D.; Wang, Q.; Zheng, A. M.; Zhang, Z. F.; Fan, J.; Liu, S. B.; Amoureux, J. P.; Deng, F., Understanding the High Photocatalytic Activity of (B, Ag)-Codoped TiO2 under Solar-Light Irradiation with XPS, Solid-State NMR, and DFT Calculations, J. Am. Chem. Soc. 2013, 135, 1607-1616.

2. Liu, F.; Feng, N. D.; Wang, Q.; Xu, J.; Qi, G.; Wang, C.; Deng, F., Transfer Channel of Photoinduced Holes on a TiO2 Surface As Revealed by Solid-State Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy. J. Am. Chem. Soc. 2017, 139, 10020-10028.

3. Feng, N. D.; Lin, H.; Song, H.; Yang, L.; Tang, D.; Deng, F.; Ye, J., Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nature Commun. 2021, 12, 4652.

 

 

催化反应中的理论化学计算

 

     结合从头算热力学,分子动力学以及微观动力学模型,探索工况下催化剂活性中心的具体结构及演化过程,揭示反应物在催化剂上的吸附扩散以及转化机制,在原子-分子水平阐明催化剂微观结构与催化反应机理,建立催化反应的全线条的理论研究。


 

1-1.png1-2.png

 

  

1. Y. Chu; X. Yi; C. Li; X. Sun; A. Zheng, Brønsted/Lewis acid sites synergistically promote the initial C–C bond formation in the MTO reaction. Chem. Sci. 2018, 9, 6470-6479.

2. Y. Chu; A.-Y. Lo; C. Wang; F. Deng, Origin of High Selectivity of Dimethyl Ether Carbonylation in the 8-Membered Ring Channel of Mordenite Zeolite. J. Phys. Chem. C 2019, 123, 15503-15512.

3. Y. Chu; G. Li; L. Huang; X. Yi; H. Xia; A. Zheng; F. Deng, External or internal surface of H-ZSM-5 zeolite, which is more effective for the Beckmann rearrangement reaction? Catal. Sci. Technol. 2017, 7, 2512-2523.

 


中国科学院精密测量科学与技术创新研究院 (中国科学院武汉物理与数学研究所) 邓风课题组
地址:武汉市武昌小洪山西30号 电话:027-87199543 邮政编码:430071
ICP备案号:鄂ICP备20009030号-2